Temporal Constraint and Relative Vector Clustering for High Frame Rate and Ultra-low Delay Arbitrary Shape Detection

杨文亮 池永研究室 修士課程修了

Research Background

Application

- Target
 - High frame rate and ultra-low delay (1ms) arbitrary shape detection
- Challenges
 - High memory consumption of vote space
 - Random process time for each pixel and extra interframe delay

Proposed method

Proposal 1.1: Relative Vectors Clustering based R-Table Construction

Accum.

Accum.

Offline stage

Address

Calc

Address

Calc.

Proposal 2: Temporal Constraint based GHT Compression and Interframe Delay Reduction

Proposal 1.2: 4-pixel-paralleled GHT Structure

Object

rotation

location &

Experiments Result

# LUT	# FF	# DSP	# BRAM
23448(11.51%)	33576(25.23%)	768(91.4%)	288(64.71%)

System Frequency(MHz)	process time per frame(ms)
100	0.7761

Test sequence (bell)	RMSE of x coordinate (pixel)	RMSE of y coordinate (pixel)	RMSE of angle (degree)
Conventional GHT	0.5	0.282843	0.374166
Proposed	0.412311	0.173205	0.374166

Conclusion

The GHT detection core reached the processing speed of 0.7761ms/frame

